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A Self-Consistent Theory for the Inter- and Intramolecular Correlation Functions
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An extended test-particle method is used to predict the inter- and intramolecular correlation functions of freely
jointed hard-sphere-Yukawa-chain fluids by calculating the segmental density distributions around a fixed seg-
ment. The underlying density functional theory for chain fluids is based on a modified fundamental measure
theory for the hard-sphere repulsive and a mean-field approximation for attraction between different segments.
The calculated intra- and inter-molecular distribution functions agree well with the results from Monte Carlo
simulations, better than those from alternative approaches.

PACS: 82.35.Lr, 61.20. Gy, 61. 25. Hq

The conventional method for investigating the mi-
croscopic structures of uniform polymeric fluids is
the polymer integral equation theory.l!! However, to
solve the intermolecular total and direct correlation
functions from the polymer integral equation the-
ory, the intramolecular correlation functions are typ-
ically unknown and must be assumed in advance us-
ing a simplified model or calculated by Monte Carlo
simulations. An alternative approach has been re-
cently proposed by Stell and co-workers.[23! based
on the product-reactant Ornstein—Zernike equation,
Wertheim’s thermodynamic perturbation theory and
polymer Percus—Yevick closure. While this new ap-
proach provides both inter- and intra-molecular cor-
relation functions, it incorrectly predicts that the in-
tramolecular correlation function is independent of
density and temperature. A self-consistent theory for
both inter- and intra-molecular correlation functions
of polymeric fluids is yet to be developed.

As proposed long ago by Percus,® the radial dis-
tribution function of a uniform fluid can be repre-
sented by the local inhomogeneity of density distri-
butions around an imaginarily fixed particle. Such
density distributions can be calculated using a density
functional theory.[®¢! In a previous workl” we have ex-
tended Percus’ idea for polymeric systems and used it
to investigate the inter- and intramolecular correlation
functions of hard-sphere-chain fluids. In this Letter,
we utilize a similar approach to investigate the mi-
croscopic structures of polymers with attractive force
represented by the Yukawa potential.

We consider freely jointed chain fluids where the
site—site potential between any pair of beads ¢ and j
is represented by the attractive Yukawa potential

(r) = 0, r <o, (1)
k) = —ee=*r=9)7 [(r/g), T >0,

where o is the hard-sphere diameter, ¢ is the potential

well depth, and z = 1.8 is fixed in this work. For con-
venience, we use the dimensionless quantities through-
out this work: T* = kT /e and n = mpo>M /6, where
k is the Boltzmann constant, T is the temperature, p
is the number density of the chain molecules, and M
is the chain length. The above model has proven to
be a good approximation for alkanes.!®!
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Fig. 1. Extended Percus trick.

Following our previous work,!”) one chain molecule,
designed as B consisting of C' and D, is tethered by
placing a segment at the origin (see Fig.1). All other
molecules, designated as A, are freely distributed
around the central chain. The two flying fragments of
chain B are further labelled as C and D, respectively.
At equilibrium, the density profiles of free chains and
the tethered fragments satisfy the variational relations
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(2)
where {2 is the grand potential functional, p(l)(R(l))
(I = A,C,D) represents the density profile for the
chain [, and R = {rgl),rél), . ,rg\l/j)l represents a
composite vector that specifies the positions of M; seg-
ments of chain [. The segmental distributions of the
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free molecules around the fixed segment is related to
the intermolecular radial distribution functions
Ma Ma
- 2 Z Z 935 (r
=1 j=1
Ma Ma

M2 >l s, (3)

zljl

where pgﬁ (r) is the density profile of segment i on
the free molecules around the fixed segment j, and
pp is the bulk segmental density. The distributions of
the segments in the fragments C' and D are directly
related to the average intramolecular correlation func-
tions w(r),

Ma My
wlr) = 35 30 3w (r) >
MA siil
=1 j=1 i=1 j=1

(4)
Because there is only one tethered chain, the segmen-
tal densities of chain B satisfy the normalization con-
dition

[ E)esar =1 )

Once we have an expression for the grand poten-
tial, the density profiles of free and tethered segments
can be determined by Eq.(2). In this Letter, such an
expression is derived from an extension of the den-
sity functional theory developed by Yu and Wul” by
including the van der Waals potential (Yukawa po-
tential) through mean-field approximation.!®) The sys-
tem considered above is equivalent to a mixture of
three polymeric components (A + C + D) in a spher-
ically symmetric external field due to the fixed seg-
ment. The grand potential functional (2 is related
to the Helmholtz energy functional F' via a Legendre
transform

2=Fp (A)(R(A)) (C)(R(C)) (D)(R(D))]

+ Y / eO(RDY — u]p" (RD)IRY,

1=A,C,D (6)

where dR") = )dr( ) ..drg\l}l represents a set of
differential Volumes for the polymer chain [ of M;
segments, u; is the chemical potential of chain I,
and () (RW) denotes the total external potential on
chain [. The total external potential acting on each
molecule is equal to the sum of the potential energy

) =3 )
i=1
The ideal gas contribution to the Helmholtz energy
functional is exactly known.['®! The excess Helmholtz
energy functional F,, is decomposed into contribu-
tions due to the non-bonded hard-sphere repulsion and
van der Waals attractions as well as chain connectiv-

ity:

F.p = kT / dr[@" + gehain] 4 / dr 2 (r), (7)

on its individual segments ¥ (R

where @™ and &P#i" are, respectively, the reduced
excess Helmholtz energy densities due to hard sphere
repulsion(® and chain connectivity.[”:1°) They can be
obtained from the modified fundamental measure the-
ories for hard-sphere fluids and polymers, respectively.
The modified approximation applied to the attractive
part of the site-site interaction potential is[®!

2 = 5 [ drpmp )l = ). (8)

Minimization of the grand potential with respect
to the density profiles of free and tethered chains yields
the average segmental density

M,
P (r) = exp(Byu) [ ARy o ")
=1

M,
exp[=BV, (RY) = 5y

where | = A,C and D, and V;)(l)(R(l)) is the total

bonding potential for a chain [, i.e.

M;—1

and )\( )( s )) is related to the excess Helmholtz energy
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functlonal F,.« and the external potential <p(- )( 5)) by
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Due to the spherical symmetry, the density pro-
files of both free and tethered segments vary only in
the radial direction, i.e.

pO(r) = p(r). (12)
Substituting Eq. (10) into Eq.(9) and after some al-

gebra simplification, we obtain the density profile of
segments

Pl () = exp(Bm) expl-pX (]G (NG (),
(13)
where G(LA)I(T) is the Green function for [ = A (free

molecule), which is determined from the recurrence
relation

G = [ exol-px M)

20r

G )
(14)

fori=2,..., M4 with G(LA)l(r) = 1. For a free chain
A, we have the additional symmetric relation
G%A)M—i-&-l _ G(LA)i. (15)

For | = C and D, the density distributions of the
two immediate neighbours of the fixed segment are
obtained by

A ) = p)) = 6(r — o) fame®. (16)
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The Green function for the next immediate neighbours
is determined by

6(c —|r —ol)
2r

and those for the remaining segments are calculated
by iteration

61) = [ i expl-ax )

0o I ) s

D2 = exp[- AL (0)] (17)

fori=3,...,M; and | = C,D. The function G%)i(r)
is obtained from

GWi(r) = / dr' expl—BAO ()]

r@(c—=|r' —r Di
L

(19)

with G%)Ml (r)=1.

The chemical potential for free chains A is obtained
from Wertheim’s first-order thermodynamic perturba-
tion theory:1]

sc Mal+ 2z
Bua =Inpy + Bulsc — 4npyo® Tr 2 (20)
where p, = Mapa is the bulk density of segments,

pbse is the excess chemical potential of corresponding

hard sphere chain fluid."Y) The chemical potentials of
the fragments C and D are determined by the nor-
malization conditions, i.e. Eq. (5).
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Fig. 2. Average radial distribution functions of Yukawa
at T* = 2.8 and n = 0.088 and 0.404, representing low and
high densities. The simulation data are from Kalyuzhnyi
et al.l1?]

Here we calculate the inter- and intra-molecular ra-
dial distribution functions of freely jointed Yukawa flu-
ids with chain length M = 2, 4 and 8. In the calcula-
tion, we fix the segments of a Yukawa chain one by one
and calculate the density profiles around the fixed seg-
ment with Egs. (13)—(20). Because of the symmetry,
only M/2 calculations are required for predicting the

average radial distribution functions. In Figs. 2 and 3,
the predicted average radial distribution functions are
compared with the corresponding Monte Carlo simula-
tion datal'? for the Yukawa at reduced temperatures
T* = 2.8 and 5.0, respectively. Good agreement is
achieved for Yukawa at all the values of the reduce
temperature T and packing fraction 7 studied, ex-
cept for distances in the vicinity of contact where the
theory overestimates the radial distribution functions.
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Fig. 3. The same as Fig.2 but 7% = 5.0 and n = 0.088,
0.251 and 0.432.
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Fig. 4. Average intermolecular radial distribution func-
tions of the hard-sphere-Yukawa 4-mers at 7* = 5.0 and
n = 0.09 and 0.412.

Figures 4 and 5 present the average intermolecu-
lar radial distribution functions for the hard-sphere-
Yukawa 4-mers and 8-mers, respectively. The deple-
tion of the intermolecular segments at low density is
due to the chain connectivity and van der Waals at-
traction, while the opposite trend at high density is
due to the packing effect. From Figs.4 and 5 we can
see that the predictions from the present method are
in good agreement with the simulation results!'? at
both low and high densities. For comparison, the
theoretical predictions from the polymer mean spheri-
cal approximation (PMSA) version['? of the product-
reactant Ornstein-Zernike approach('?! are also shown
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in Fig.5. In contrast to the present method, the
PMSA theory overestimates the average intermolec-
ular radial distribution functions for Yukawa 8-mers
at low density (n = 0.085). At high density, the
present method also provides slightly more accurate
intermolecular radial distribution functions.
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Fig. 5. The same as Fig. 4 but for 8-mers at 7* = 5.0 and
n = 0.085 and 0.423.
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Fig. 6. Average intramolecular correlation functions of

the hard-sphere-Yukawa 4-mers at T* = 5.0 and n = 0.088

and 0.412. The simulation data are from Kalyuzhnyi et
al12]

In Figs. 6 and 7, we compare the predictions of the
average nonbonded intramolecular correlation func-
tions 47r2w(r) with corresponding Monte Carlo sim-
ulation results by Kalyuzhnyi et al['? for the hard-
sphere-Yukawa 4-mers and 8-mers, respectively. Also
shown in these figures are the predictions from the
PMSA theory of Kalyuzhnyi et al.[*?l The discontinu-
ity at 7 = 20 is due to the direct interaction between
next nearest neighbours along the polymer chain. For
r < 20, the intramolecular radial distribution func-
tion increases monotonically with separation at low
density. However, as the density increases it shows a
minimum at approximate r = 1.5¢0. For r > 20, the
intramolecular correlation functions show the features
of nonmonotonic decay. One can see from Figs. 6 and
7 that the intramolecular correlation functions from
the PMSA theory of Kalyuzhnyi et all'?l are only

in qualitative agreement with the Monte Carlo sim-
ulation data, and are independent of the density of
Yukawa chain fluid. The intramolecular radial distri-
bution functions predicted from the present method
improves significantly. Similar to the case for hard-
sphere-chain fluids, the agreement between the present
method and simulation is only semi-quantitative, es-
pecially in the vicinity of contact. This discrepancy is
likely related to the approximation in representing the
excess Helmholtz energy functional due to the chain
connectivity.
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Fig. 7. The same as Fig. 6 but for 8-mers at 7* = 5.0 and
n = 0.085 and 0.423.

In conclusion, we have used the extended test-
particle method to predict both inter- and intra-
molecular correlation functions of freely jointed hard-
sphere-Yukawa-chain fluids. The density functional
theory used in the calculation of the segmental den-
sity profiles is an extension of that by Yu and Wu,[71%!
where the Helmholtz energy functional due to the at-
tractive potential is included by the mean-field ap-
proximation. The present method predicts intra- and
inter-molecular correlation functions in good agree-
ment with the simulation results. In comparison with
alternative approaches in the literature, the present
method has the advantage of predicting the nonideal
behaviour of both inter- and intra-molecular correla-
tion functions self-consistently.
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